DEVELOPMENT GUIDE

ALTA DS 2

Android BSP 3.0
Copyright
Copyright © 2015 VIA Technologies Incorporated. All rights reserved.

No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies, Incorporated.

Trademarks
All brands, product names, company names, trademarks and service marks are the property of their respective holders.

Disclaimer
VIA Technologies makes no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided in this document is believed to be accurate and reliable as of the publication date of this document. However, VIA Technologies assumes no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

VIA Technologies, Inc. reserves the right the make changes to the products described in this manual at any time without prior notice.
Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>2015/1/21</td>
<td>Initial external release</td>
</tr>
<tr>
<td>0.2</td>
<td>2015/2/10</td>
<td>Added display mode, changed section and adb description</td>
</tr>
<tr>
<td>0.3</td>
<td>2015/4/20</td>
<td>Refined document</td>
</tr>
<tr>
<td>0.4</td>
<td>2015/4/20</td>
<td>Added adjust config and tool chain path</td>
</tr>
<tr>
<td>1.0</td>
<td>2015/4/27</td>
<td>Formal release version</td>
</tr>
<tr>
<td>1.01</td>
<td>2015/6/29</td>
<td>Applied document template and refined version code</td>
</tr>
<tr>
<td>1.02</td>
<td>2015/7/1</td>
<td>Refined document</td>
</tr>
<tr>
<td>1.03</td>
<td>2015/7/22</td>
<td>Refined document and documentation version</td>
</tr>
<tr>
<td>1.04</td>
<td>2015/7/24</td>
<td>Added OTA update steps</td>
</tr>
<tr>
<td>1.05</td>
<td>2015/7/31</td>
<td>Updated back page</td>
</tr>
<tr>
<td>1.06</td>
<td>2015/8/25</td>
<td>Added section 6.1 Setting Split/Clone Mode through S3 PCD Editor</td>
</tr>
<tr>
<td>1.07</td>
<td>2015/10/12</td>
<td>Removed ARTiGO A900, VAB-1000 in the document</td>
</tr>
<tr>
<td>1.08</td>
<td>2015/10/22</td>
<td>Modified typo</td>
</tr>
</tbody>
</table>
Table of Contents

1. **Introduction** ... 1
 1.1. Overview ... 1
 1.2. Package Content .. 1

2. **Establishing a Build Environment** ... 3
 2.1. Setting up a Linux build environment .. 3
 2.2. Installing the Tool Chain ... 3
 2.3. Installing the JDK .. 4
 2.4. Installing the required packages ... 6

3. **Building the BSP** ... 7
 3.1. Prepare the BSP Source Tree ... 7
 3.2. BSP building procedure ... 8
 3.2.1. Building the Kernel ... 8
 3.2.2. Building the Android ... 9
 3.2.3. Building the U-Boot ... 11

4. **Making Android System Booting Media** .. 12
 4.1. Requirements .. 12
 4.2. EVK Installation Package ... 12
 4.3. Update the Firmware Package ... 18
 4.3.1. How to update the U-Boot ... 18
 4.3.2. How to update the boot.img ... 19
 4.3.3. How to update the system.img .. 19
 4.3.4. How to update the recovery.img ... 19
 4.3.5. How to update the userdata.img ... 20
 4.3.6. How to update the version information .. 20
 4.3.7. How to update the OTA package (Optional) ... 20
 4.4. Setup U-Boot additional environment variables .. 22
 4.4.1. How to make ‘other_env.uimg’? .. 22
4.5. Adjust config file of Firmware Installation Package 23

5. Functionality ... 24

6. Platform Specific Setting .. 25
 6.1. Setting Split/Clone Mode through S3 PCD Editor 25
 6.1.1. Preparation .. 25
 6.1.2. Setting Strategy ... 26

Appendix A. Definitions .. 28

Appendix B. EVK Installation Package through vfat SD 29
 B.1. Requirements ... 29
 B.2. EVK Installation Package .. 29

Appendix C. Troubleshooting .. 31
 C.1. Fail to login X Window or hang on Ubuntu 12.04.x 31
 C.2. Fail to update the Firmware automatically 33
List of Figures

Figure 1 Debug port connection and setting ... 13
Figure 2 Installation progressing .. 17
Figure 3 Finish installing and message shows up .. 17
Figure 4 Finish installing and reboot count down procedure 18
Figure 5 OTA in progress .. 21
List of Tables

Table 1 BSP content .. 1
Table 2 EVK content ... 2
Table 3 Document content ... 2
1. Introduction

1.1. Overview

The purpose of this Development Guide is to help you get started with Android Board Support Package (BSP) for **ALTA DS 2 platform**.

This covers the topics such as:

- Setting development environment
- Creating your booting media and flash a new Android firmware / OS image onto your system
- Modifying the boot parameters to fit the case you use

1.2. Package Content

The **ALTA DS 2 Android BSP** can be downloaded from the VIA Embedded website, it contains the following components:

BSP: The package includes U-Boot, Kernel, Android source code, Android patches and tool chain.

<table>
<thead>
<tr>
<th>BSP</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-Boot</td>
<td>2013.07</td>
</tr>
<tr>
<td>Kernel</td>
<td>android-3.10</td>
</tr>
<tr>
<td>Android</td>
<td>android-4.4.2_r2</td>
</tr>
<tr>
<td>Patch</td>
<td>date code (YYMMDD.hhmm)</td>
</tr>
<tr>
<td>ToolChain</td>
<td>2011.09</td>
</tr>
</tbody>
</table>

Table 1 BSP content
Note:
1. Android: Developers can download Android source code from Android Open Source Project as well.
3. ToolChain: The tool chain package is used to build u-boot and kernel.

EVK (Evaluation Kit): The binary package includes eloader, U-Boot, Kernel, Android and firmware installation package.

<table>
<thead>
<tr>
<th>EVK</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firmware Install</td>
<td>Firmware installer used to upgrade the firmware for the target device. Including the following binary files under bspinst folder:</td>
</tr>
<tr>
<td></td>
<td>• ELoader: Primary boot loader used to initialize the hardware.</td>
</tr>
<tr>
<td></td>
<td>• U-Boot: Second boot loader used to initialize the hardware and boot from the operation system.</td>
</tr>
<tr>
<td></td>
<td>• Kernel: Linux kernel used to provide system program services and manage hardware and software resources.</td>
</tr>
<tr>
<td></td>
<td>• Android: A mobile operating system based on the Linux kernel and developed by Google.</td>
</tr>
<tr>
<td>Tools</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SmartETK</td>
</tr>
<tr>
<td></td>
<td>• OTA</td>
</tr>
<tr>
<td></td>
<td>• S3PCDEditor</td>
</tr>
</tbody>
</table>

| Table 2 EVK content |

Document: Includes the development guide and any other documents required for the development.

<table>
<thead>
<tr>
<th>Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development Guide</td>
</tr>
<tr>
<td>Evaluation Guide</td>
</tr>
<tr>
<td>Android Smart ETK SDK Programming Guide</td>
</tr>
</tbody>
</table>

| Table 3 Document content |
2. Establishing a Build Environment

This chapter guides you through setting up your local working environment to build the BSP.

2.1. Setting up a Linux build environment

Developers have to setup a Linux environment for building the BSP. The following Ubuntu branches are supported.

- Version: Ubuntu 12.04 LTS 64-Bits

Developers can refer to Android Source Code webpage (http://source.android.com/source/initializing.html) to get more information about setting up the development environment.

2.2. Installing the Tool Chain

A tool chain installed is required before building the U-Boot and Linux Kernel images. The following procedure would guide developers to setup the tool chain properly.

- Download the BSP Zip file from VIA Embedded website and decompress it. Developers can get the Tool Chain under BSP/ToolChain.
 - Package Name: arm_201109_gcc4.6.1.tgz
 - Cross Compile Name: arm-none-linux-gnueabi-
 - Alias Name: arm_1109_le-
2.3. Installing the JDK

The Android 4.4.2 requires Java JDK. A Java 6 SE needs to be installed properly before building the Android framework. The following procedure would guide developers through installing the Java JDK properly on Ubuntu. There are two ways to install the Java JDK.

[Way 1]

- Install the JDK through apt package management

Default source list in Ubuntu 12.04 does not provide Java 6 JDK. Developers have to add a new server manually.

```bash
user@ubuntu:~$ sudo add-apt-repository ppa:webupd8team/java
user@ubuntu:~$ sudo apt-get update
user@ubuntu:~$ sudo apt-get install oracle-java6-installer
```
- Verify the JAVA version

```bash
user@ubuntu:~$ java -version
java version "1.6.0_45"
Java(TM) SE Runtime Environment (build 1.6.0_45-b06)
Java HotSpot(TM) 64-Bit Server VM (build 20.45-b01, mixed mode)
```

[Way 2]

- Download the corresponding version of Java JDK from Oracle official website and install it. The Java 6 SE Development Kit is used by this guide.

- Copy jdk binary to the library folder and execute the binary.

```bash
user@ubuntu:~$ cp jdk-xxxx-linux-xxx.bin /usr/lib
user@ubuntu:~$ cd /usr/lib
user@ubuntu:~$ ./jdk-xxxx-linux-xxx.bin
# jdk-xxxx-linux-xxx.bin: is the JDK binary you downloaded.
```

- Configure the Environment Variables for JDK.

```bash
user@ubuntu:~$ vi ~/.bashrc
# Add JAVA_HOME, CLASSPATH and new PATH.
export JAVA_HOME=/<java install directory>/jdkx.xx.x_xx
export CLASSPATH=.:$JAVA_HOME/lib
export PATH=$JAVA_HOME/bin:$PATH
# Save and exit
user@ubuntu:~$ source ~/.bashrc
# Reload .bashrc
# "x.xx.x_xx": is the version number of java JDK.
# <java install directory>: is the directory of JAVA
```
• Verify the JAVA version

```
user@ubuntu:~$ java -version
java version "1.6.0_45"
Java(TM) SE Runtime Environment (build 1.6.0_45-b06)
Java HotSpot(TM) 64-Bit Server VM (build 20.45-b01, mixed mode)
```

2.4. Installing the required packages

Developers should install the required packages according to the host OS version. Developers should refer to the [Android Source Code webpage](http://source.android.com/source/initializing.html) to install the necessary software packages before any development. Here is an example for Ubuntu 12.04.x LTS 64-Bits:

```
user@ubuntu:~$ sudo apt-get install libglapi-mesa:i386
user@ubuntu:~$ sudo apt-get install git gnupg flex bison gperf build-essential zip curl libc6-dev libncurses5-dev:i386 x11proto-core-dev libx11-dev:i386 libreadline6-dev:i386 libgl1-mesa-glx:i386 libgl1-mesa-dev g++-multilib mingw32 tofrodos python-markdown libxml2-utils xsltproc zlib1g-dev:i386
user@ubuntu:~$ sudo ln -s /usr/lib/i386-linux-gnu/mesa/libGL.so.1 /usr/lib/i386-linux-gnu/libGL.so
user@ubuntu:~$ sudo apt-get install uboot-mkimage
```

Note:

1. Due to `libgl1-mesa-glx:i386` has dependence issue, please install it first.
   ```
   $ sudo apt-get install libglapi-mesa:i386
   ```
2. Please refer to Appendix C if developer encounters Ubuntu 12.04.3 (and above) booting hang issue after installing the “libglapi-mesa:i386” and “libgl1-mesa-glx:i386”.
3. Building the BSP

This chapter describes the BSP building procedure for the ALTA DS 2.

3.1. Prepare the BSP Source Tree

The ALTA DS 2 Android BSP includes several source packages under BSP directory and all the packages are packed as tgz format located in the subdirectories with the same package name below.

- **Kernel Packages:**
 - KERNEL_Full_Src*.tgz
 It is the full kernel source tree including the Linux 3.10 with source code.
 - KERNEL_Modules_Src*.tgz
 It is the module source code package working with the VIA Elite E1000 graphic and video engines.

- **Android Package:**
 - android-4.4.2_r2-140415.tgz
 It is the android source code package downloaded from Google.
 https://android.googlesource.com

- **Patch Package:**
 - ANDROID_Patch_Src*.tgz
 The patch is the modified sources from Google android source package above.

- **U-Boot Package**
3.2. BSP building procedure

This section describes how to build the Kernel, Android and U-Boot.

3.2.1. Building the Kernel

Followings are the reference commands to build the kernel:

```
# setup environment parameters
# The kernel source path in this example is BSP/Kernel
user@ubuntu:~$ export KERNEL_BASE_PKG=BSP/Kernel/KERNEL_Full_Src*.tgz
user@ubuntu:~$ export KERNEL_MODULE_PKG=BSP/Kernel/KERNEL_Modules_Src*.tgz
# my_dir can be changed to any folder name by developer
user@ubuntu:~$ export PROCESSING_PATH=my_dir
user@ubuntu:~$ export PROCESSING_KERNEL_PATH=$PROCESSING_PATH/kernel-3.10
user@ubuntu:~$ export PROCESSING_MODULE_PATH=$PROCESSING_PATH/kernel-3.10_modules

# build kernel
# decompress the full kernel source package to the processing folder
user@ubuntu:~$ tar zxf $KERNEL_BASE_PKG -C $PROCESSING_PATH
user@ubuntu:~$ chmod +w $PROCESSING_KERNEL_PATH/* -R
user@ubuntu:~$ chmod +x $PROCESSING_KERNEL_PATH/build_emmc_dt.sh
user@ubuntu:~$ cd $PROCESSING_KERNEL_PATH/
user@ubuntu:~$ ./build_emmc_dt.sh arm_1109_le- -j4

# build modules
# decompress the kernel module source package to the processing folder
user@ubuntu:~$ tar zxf $KERNEL_MODULE_PKG -C $PROCESSING_PATH
user@ubuntu:~$ chmod +w $PROCESSING_MODULE_PATH/* -R
user@ubuntu:~$ make -C $PROCESSING_MODULE_PATH
KDIR=$PROCESSING_KERNEL_PATH MDIR=$PROCESSING_MODULE_PATH modules
CROSS_COMPILE=arm_1109_le- -j4
```
Check images generated under following directories after doing above procedures.

Kernel:
$\text{PROCESSING_KERNEL_PATH/arch/arm/boot/zImage}$

Modules:
$\text{PROCESSING_MODULE_PATH/s3g_core/s3g.ko}$
$\text{PROCESSING_MODULE_PATH/s3g_core/s3g_core.ko}$

3.2.2. Building the Android

The Android image should be built according to the configuration. Followings are the reference commands to build Android framework:

```bash
# setup environment parameters
# The Android source path in this example is BSP/Android
user@ubuntu:~$ export ANDROID\_BASE\_PKG=BSP/Android/android-4.4.2\_r2-140415.tgz

# The Android patch files path in this example is BSP/Patch
user@ubuntu:~$ export ANDROID\_PATCH\_PKG=BSP/Patch/ANDROID\_Patch\_Src*.tgz

# my_dir can be changed to any folder name by developer
user@ubuntu:~$ export PROCESSING\_PATH=my\_dir
user@ubuntu:~$ export PROCESSING\_ANDROID\_PATH=$PROCESSING\_PATH/android-4.4.2\_r2

# build android
# decompress the Android original source package and the patch to the processing folder
user@ubuntu:~$ tar zxf $ANDROID\_BASE\_PKG -C $PROCESSING\_PATH
user@ubuntu:~$ tar zxf $ANDROID\_PATCH\_PKG -C $PROCESSING\_ANDROID\_PATH

# update kernel (it's rename, not copy to kernel folder)
user@ubuntu:~$ cp -rf $PROCESSING\_KERNEL\_PATH/arch/arm/boot/zImage $PROCESSING\_ANDROID\_PATH/device/via/elite1000/kernel

# update module
user@ubuntu:~$ cp -rf $PROCESSING_MODULE_PATH/s3g_core/s3g.ko \
$PROCESSING_ANDROID_PATH/device/via/elite1000/
user@ubuntu:~$ cp -rf $PROCESSING_MODULE_PATH/s3g_core/s3g_core.ko \
$PROCESSING_ANDROID_PATH/device/via/elite1000/

user@ubuntu:~$ make -C $PROCESSING_ANDROID_PATH TARGET_PRODUCT=elite1000 \
    TARGET_BUILD_VARIANT=user -j4
or
user@ubuntu:~$ make -C $PROCESSING_ANDROID_PATH TARGET_PRODUCT=elite1000 \
    TARGET_BUILD_VARIANT=userdebug -j4

# build otapackage
user@ubuntu:~$ make -C $PROCESSING_ANDROID_PATH otapackage \
    TARGET_PRODUCT=elite1000 TARGET_BUILD_VARIANT=user -j4
or
user@ubuntu:~$ make -C $PROCESSING_ANDROID_PATH otapackage \
    TARGET_PRODUCT=elite1000 TARGET_BUILD_VARIANT=userdebug -j4

# Check images generated under following directories after doing above procedures.
$PROCESSING_ANDROID_PATH/out/target/product/elite1000/boot.img
$PROCESSING_ANDROID_PATH/out/target/product/elite1000/recovery.img
$PROCESSING_ANDROID_PATH/out/target/product/elite1000/system.img
$PROCESSING_ANDROID_PATH/out/target/product/elite1000/userdata.img
$PROCESSING_ANDROID_PATH/out/target/product/elite1000/cache.img
$PROCESSING_ANDROID_PATH/out/target/product/elite1000/*ota*.zip //ota package

$PROCESSING_ANDROID_PATH/out/target/product/elite1000/obj/PACKAGING/target
_files_intermediates/*target_files*.zip //target file

# post build for release keys and sign (optional, for release purpose only)
refer to http://www.kandroid.org/online-pdk/guide/release_keys.html
3.2.3. Building the U-Boot

The U-Boot would initiate the required hardware for booting and loading the kernel image from boot storage into memory. Followings are the reference commands to build the U-Boot:

```bash
setup environment parameters
The U-Boot source path in this example is BSP/U-Boot
user@ubuntu:~$ export UBOOT_FULL_PKG=BSP/U-Boot/U-BOOT_Full_Src*.tgz

my_dir can be changed to any folder name by developer
user@ubuntu:~$ export PROCESSING_PATH=my_dir
user@ubuntu:~$ export PROCESSING_U_BOOT_PATH=$PROCESSING_PATH/uboot-2013.07

build uboot
decompress the source package to the processing folder
user@ubuntu:~$ tar zxf $UBOOT_FULL_PKG -C $PROCESSING_PATH
user@ubuntu:~$ chmod +w $PROCESSING_U_BOOT_PATH/* -R
user@ubuntu:~$ chmod +x $PROCESSING_U_BOOT_PATH/build_elite1000_evm_emmc_config.sh
user@ubuntu:~$ cd $PROCESSING_U_BOOT_PATH/
user@ubuntu:~$./build_elite1000_evm_emmc_config.sh arm_1109_le -j4

Check images generated under the directory after doing above procedures.
$PROCESSING_U_BOOT_PATH/u-boot.bin
$PROCESSING_U_BOOT_PATH/u-boot.vcd
```
4. Making Android System Booting Media

This chapter describes how to install and upgrade the firmware for ALTA DS 2 platform. Developers could follow the procedure described in section 4.1 below for installing the firmware provided by the EVK software package. Developers could also prepare the firmware installation package for firmware upgrade after the modification on BSP by following the rest of content in this section.

4.1. Requirements

- Linux development computer
- SD storage card
- EVK package
  - Elite1000 Android4.4.2 EVK*.tgz (Support ext4 SD)
  - Elite1000 Android4.4.2 FirmwareInstall vfat bspinst*.tgz (Support vfat SD)

**Note:**
1. For the vfat EVK installation package, please refer to Appendix B to get more installation process.

4.2. EVK Installation Package

The up-to-date firmware is included in the latest EVK package which could be downloaded from VIA Embedded Website. Developers can follow the steps
to install the firmware package which is supported in ext4 formatted SD storage card for evaluation from EVK without building the BSP directly.

**Step 1:** Prepare a SD storage card with ext4 formatted.

**Step 2:** Copy firmware package from `/EVK/FirmwareInstall/*.` to SD storage card root directory. Developers can check content in the SD storage card when finish copying the files.

```bash
#The mount path of SD for this example is /mnt/tmp1

user@ubuntu:~$ ls /mnt/tmp1
bspinst _EXT4_SD_CARD_ONLY_ scriptcmd
```

**Step 3:** The recommended connection of debug port between device and Linux host computer is shown in Figure 1.

![Debug port connection and setting](image)

#Setting in Terminal AP, ex: Putty
Baud Rate: 115200
Data: 8 bit
Parity: none
Stop: 1 bit
Flow control: none

**Figure 1 Debug port connection and setting**

The U-Boot will wait 3 seconds to stop booting after powering on by pressing any key. When booting is stopped, that prompt sign will show up on terminal
Developers can skip to access U-Boot setting if nothing needs to be changed.

```
#The booting message for this example is ALTA DS 2

eloader-32.00.01 start up!
board_id:73a1
cpu_freq: 1G
mclk: 667M

Product Version: unspecified
Update List (Commit): unspecified

U-Boot 32.01.00-elite1000 (May 21 2015 - 11:38:29)

Board: ELITE1000 EVM
I2C: ready
No support HDMI-IN u-boot, Only reserve 8MB for secure boot
DRAM: 2 GIB
MMC: S3Graphics Elite SD/MMC: 0, S3Graphics Elite SD/MMC: 1, S3Graphics Elite SD/MMC: 2
connected devices = 0x8000
Bios connect devices is 0x8000.
IGA1 device is 0x8000
IGA2 device is 0x0
Output for IGA1 is: 0x8000
SD/MMC: Select 400KHz as clock rate
mask data:4
elite_mci_command: waiting for status update
mask data:4
elite_mci_command: waiting for status update
SD/MMC: Select 400KHz as clock rate
SD/MMC: Select 50MHz as clock rate
Loading boot logo BMP file w/ 502x302 from eMMC
set mode on IGA[0]->DP5(Preferred Mode) [OK]
source mode: 1920x1200, 32 bit
scaler size: 1920x1200
dest mode: 1920x1200@6000
Elite PCIe port 0: pp->base 0 0xd80b0000
RP before 0x250 0x20000007
RP middle 0x250 0x20000003
RP after 0x250 0x20000003
Elite PCIe port 1: pp->base 1 0xd80c0000
RP before 0x250 0x20000006
RP middle 0x250 0x20000002
RP after 0x250 0x20000002
Set 0 norm base address d80b1018 base c0000000, size 00001000
Set 1 perf base address d80b1020 base c0100000, size 00004000
In: serial
Out: serial
Err: serial
press any key to abort fastboot!
0
Device is locked
lba size = 512
lba_start partition_size name
```
Info partition magic 0x0 invalid, assuming none
No existing device info found.
Setting serial number from constant (no dieid info)
fastboot serial_number = 00123ABCDEF
Returning key pressed false
boot_method is 1

#To type “pri” to print out current U-Boot parameter or type “boot” to boot up directly
S3 # pri
androidno=030a3d8408e49475
baudrate=115200
bootargs=console=ttyS1,115200n8 root=/dev/mmcblk0p1
rootflags=errors=remount-ro,commit=0 rootfstype=ext4 rw init=/init
bootargs_default=console=ttyS1,115200n8 root=/dev/mmcblk0p1
bootargs_emmc=setenv bootargs ${kernelargs}
androidboot.serialno=${(androidno)} root=/dev/mmcblk0p9 rootwait
rootflags=errors=remount-ro,commit=0 rootfstype=ext4 rw ${mtdparts}
init=/init rw
bootargs_mmc=setenv bootargs ${kernelargs}
androidboot.serialno=${(androidno)} root=/dev/mmcblk0p1 ro rootwait
rootflags=errors=remount-ro,commit=0 rootfstype=ext4 rw ${mtdparts}
init=/init rw
bootargs_nand=setenv bootargs ${kernelargs}
androidboot.serialno=${(androidno)} root=/dev/mtdblock15 rootfstype=yaffs2
init=/init rw
bootcmd=emmc format;run bootargs_mmc; ext4load mmc 0:1 0x0 scriptcmd; if
iminfo 0x0; then source 0;
else run bootcmd_mmc; fi
bootcmd_default=run bootargs_mmc; ext4load mmc 0:1 0x0 scriptcmd; if
iminfo 0x0; then source 0;
else run bootcmd_mmc; fi
bootcmd_emmc=run bootargs_emmc & ext4load mmc 2:9 0x60000000 elite1000-
emmc.dbt; ext4load mmc 2:9 0x
2800000 uImage; if iminfo 0x2800000; then bootm 0x2800000 - 0x6000000;
else run bootcmd_nand; fi
Step 4: Insert the SD storage card to the target device and power it on. Installation will be executed automatically as shown in Figure 2~Figure 3.

Step 5: Remove the SD storage card when “Please remove installation media” message is shown (Figure 4). The device will reboot automatically and boot up Android.
Figure 2 Installation processing

Figure 3 Finish installing and message shows up
4.3. Update the Firmware Package

Developers can skip 4.3.1~4.3.6 if it’s not needed to update the firmware package which is built by them.

4.3.1. How to update the U-Boot

Developers could update the U-Boot image in SD storage card then upgrade the firmware for ALTA DS 2 after the U-Boot is modified. Follow the procedure to update the U-Boot image in the firmware installation package.

- Refer to “Build U-Boot” section of Development Guide to get the u-boot.bin
- Copy u-boot.bin to the /bspinst/u-boot.bin into SD storage card
4.3.2. How to update the boot.img

Developers would need to update the boot.img image in SD storage card then upgrade the firmware for ALTA DS 2 after the Android framework is modified. Follow the procedure to update the boot.img image in the firmware installation package.

- Refer to “Build Android” section of Development Guide to get the u-boot.img
- Copy boot.img to the /bspinst/boot.img into SD storage card

4.3.3. How to update the system.img

Developers would need to update the system.img image in SD storage card then upgrade the firmware for ALTA DS 2 after the Android framework is modified. Follow the procedure to update the system.img image in the firmware installation package.

- Refer to “Build Android” section of Development Guide to get the system.img
- Copy system.img to the /bspinst/system.img of SD storage card

4.3.4. How to update the recovery.img

Developers would need to update the recovery.img image in SD storage card then upgrade the firmware for ALTA DS 2 after the Android framework is modified. Follow the procedure to update the recovery.img image in the firmware installation package.

- Refer to “Build Android” section of Development Guide to get the recovery.img
- Copy recovery.img to the /bspinst/recovery.img of SD storage card
4.3.5. How to update the userdata.img

Developers would need to update the userdata.img image in SD storage card then upgrade the firmware for ALTA DS 2 after the Android framework is modified. Follow the procedure to update the userdata.img image in the firmware installation package.

- Refer to “Build Android” section of Development Guide to get the userdata.img
- Copy userdata.img to the /bspinst/userdata.img of SD storage card

4.3.6. How to update the version information

Developers could set the proper version number by modifying the version file below.

- Modify /bspinst/version in SD storage card

4.3.7. How to update the OTA package (Optional)

Developers can update the OTA package locally. The OTA package for this example is obtained from EVK/Tools/signed-elite1000-ota-*.zip.

**Step1:** Copy zip file to the SD storage card or USB flash drive.

**Step2:** Insert the SD storage card or USB flash drive to the target device.

**Step3:** Make sure the debug port is connecting to the PC through the RS232 cable.

**Step4:** Power on the target device and wait for Android booting up completely. Developers can see the prompt as below:

```
Press “Enter” key in the terminal application if Android boot up completely

root@elite1000:/ #
```
Step 5: Execute the following command:

```bash
Press “Enter” key in the terminal application if Android boot up completely
root@elite1000: #
root@elite1000: # mkdir /cache/recovery/
root@elite1000: # cp -f /mnt/<<Path of Storage>>/signed-elite1000-ota-*.zip /cache //File name depend on the real full file name
root@elite1000: # echo "--update_package=/cache/signed-elite1000-ota-*.zip" > /cache/recovery/command
root@elite1000: # reboot recovery
```

Figure 5 OTA in progress

Step 6: System will reboot when OTA finish. Developer can check log file under /cache.
4.4. Setup U-Boot additional environment variables

U-Boot already has its own default environment variables after erasing and flashing u-boot.bin to SPI ROM. If developers want to add additional variables, developers could modify the script file ‘other_env.uimg’. Please prepare an Ubuntu working system and make sure that ‘apt-get install uboot-mkimage’ has been installed.

- Make sure the uboot-mkimage has been installed.

4.4.1. How to make ‘other_env.uimg’?

Follow U-Boot command rules and store the commands in a plain text file. For example, create a `<my_other_env>.txt` file as follows:

```
create U-Boot image script file.
user@ubuntu:~$ mkimage -A arm -T script -C none -d <my_other_env>.txt other_env.uimg

copy other_env.uimg to the /bspinst/other_env.uimg in SD card.
```

```bash
1 ##VIA uboot_env_script##
2 #setenv <env_name> '<env_contents>'
3 #saveenv
4
5 echo *** VIA UBoot Other ENV Setting Done ***;
```
4.5. Adjust config file of Firmware Installation Package

To modify `/bspinst/bspinst.cfg`, developers can refer to the setting below depending on the platform.

```
#Example
setenv boot-target ds2-2G
<!--
boot-target :
 vab1000 /* vab1000 */ ,
 a900 /* a900 */ ,
 ds2-1G /* ds2-1G */ ,
 ds2-2G /* ds2-2G */ ,
-->
5. Functionality

ALTA DS 2 is designed with enhanced features including UART and Watchdog Timer support. These Functions can be controlled by Smart ETK Tool under Android Environment. For more details of Smart ETK, please refer to "Android Smart ETK SDK Programming Guide.pdf" in the "Document" Folder and install the same APK from /EVK/Tools/SmartETK for evaluation directly.
6. Platform Specific Setting

6.1. Setting Split/Clone Mode through S3 PCD Editor

The supported device is listed below.

- ALTA DS 2 2GB RAM SKU

To enable the Split/Clone Mode Support in ALTA DS 2, VIA provides an Editor Tool to enable HDMI2 output.

6.1.1. Preparation

The S3 PCD Editor Tool was located in the "TestTool" Folder and named as "S3 PCD Editor.exe". It is a Windows-Based Execution File and needs to be used under Windows OS. To use the S3 PCD Editor, the following items need to be prepared for S3 PCD Editor Reference:

1. Target U-Boot Binary File
2. The "u-boot.vcd" file which corresponds to Target U-Boot Binary
3. S3 PCD Editor.exe

Items (1) and (2) will be generated in the root folder of U-Boot Source Code after compiling the U-Boot. Refer to “Build U-Boot” section for details.
6.1.2. Setting Strategy

Follow the steps:

1. Execute the "S3 PCD Editor.exe" and open the "u-boot.bin" of the Target U-Boot Binary.

Make sure the corresponding "u-boot.vcd" is located in the same folder.

2. Select the "Supported Display Devices" Menu and enable the "DVO" to support HDMI 2 output.

3. Be sure to "Save" the Setting after exiting the S3 PCD Editor.
4. Copy the modified u-boot.bin to the /bspinst/u-boot.bin to update U-Boot. For more details, please refer to Chapter 4.

5. To set Split/Clone Mode under Android OS:

Setting->Display

![Image of Split/Mode Switcher]

Reboot is required in order to apply Mode switch.
Appendix A. Definitions

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Android</td>
<td>Android is a trademark of Google Inc.</td>
</tr>
<tr>
<td>ARM</td>
<td>ARM is a trademark of ARM Inc.</td>
</tr>
<tr>
<td>BSP</td>
<td>Board Support Package</td>
</tr>
<tr>
<td>HDMI</td>
<td>High Definition Multimedia Interface</td>
</tr>
<tr>
<td>SD</td>
<td>Secure Digital Multimedia Card</td>
</tr>
<tr>
<td>Micro SD</td>
<td>Micro Size Secure Digital Multimedia Card</td>
</tr>
<tr>
<td>Elite E1000</td>
<td>SoC Chipset Name</td>
</tr>
<tr>
<td>VIA</td>
<td>VIA Technologies, Inc.</td>
</tr>
</tbody>
</table>
Appendix B. EVK Installation Package through vfat SD

B.1. Requirements

- Linux development computer
- SD storage card
- EVK package
 - Elite1000 Android4.4.2 FirmwareInstall vfat bspinst*.tgz
 (Support vfat SD)

B.2. EVK Installation Package

Step 1: Prepare a SD storage card with vfat formatted.

Step 2: Copy the firmware package from /EVK/FirmwareInstall_vfat_bspinst/*.* to SD storage root directory.

Step 3: Connect the debug port between device and Linux host computer.

Step 4: Insert the SD storage card to the target device and power it on. Press any key to access U-Boot setting.

Step 5: Modify U-Boot parameter

```bash
# Modify U-Boot parameter to set fat booting.
setenv bootcmd 'emmc format; run bootargs_mmc; fatload mmc 0:1 0x0
scriptcmd; if iminfo 0x0; then source 0; else run bootcmd_mmc; fi'
setenv bootcmd_default 'run bootargs_mmc; fatload mmc 0:1 0x0 scriptcmd;
if iminfo 0x0; then source 0; else run bootcmd_mmc; fi'
setenv bootcmd_mmc 'run bootargs_mmc & & fatload mmc 0:1 0x6000000
bspinst/elite1000-emmc.dtb; fatload mmc 0:1 0x2800000 bspinst/uImage; if
iminfo 0x2800000; then bootm 0x2800000 - 0x6000000; else run bootcmd_emmc;
```
Step 6: Installation will be executed automatically.

Step 7: Remove the SD storage card when the message “Please remove installation media” is shown. The device will reboot automatically and then bootup Android.
Appendix C. Troubleshooting

C.1. Fail to login X Window or hang on Ubuntu 12.04.x

- **Symptom:**
 - OS may hang in the “login screen” shown when user has finished installing the OS and reboot for the first time.
 - X window may hang after installing the package “libglapi-mesa:i386” and “libgl1-mesa-dri:i386”.

- **Workaround:**
 - Boot up the OS and press “ESC” until Grub screen is shown. (See the PIC, please)

 ![Grub Screen]
 Ubuntu, with Linux 3.13.0-32-generic
 Ubuntu, with Linux 3.13.0-32-generic (recovery mode)
 Memory test (memtest86+)
 Memory test (memtest86+, serial console 115200)

 - Edit the boot command by pressing “e” and user can enter the edit progress.
To replace “quite splash” by “text”, press F10 to boot up OS.

User will enter the text mode.

Be sure the network is workable and user can install xserver-xorg-lts-precisely to fix the X Window login issue.

```bash
$ sudo apt-get install xserver-xorg-lts-precise
```

Reboot the OS and user should be able to login into Ubuntu 12.04.x
C.2. Fail to update the Firmware automatically

If it cannot be updated automatically after powering on, developers can type the command below in U-Boot to update the firmware manually.

```
ext4load mmc 0:1 0 scriptcmd; source 0
(please press any key on normal boot)
press any key to abort fastboot!
fbt_preboot: request for a normal boot
Hit any key to stop autoboot: 0
```