Selection and Integration of Embedded Display Devices
Display System Revealed

LCD Screen Implementation

Touch Screen Support

VIA Display Advantages
Display System Revealed

- Evolution of Information Delivery
- Display System
- Resolution
Evolution of Information Delivery

Primitive Times
Evolution of Information Delivery

The Age of Electronics
Display Screen

Definition of Display System
- Electronic system providing visual information

Application Area of Display System
- Status monitoring and objective display
- Non-visible light or indirect visual image display
- HMI
Display System

System Structure

- Display Content
- Video Card
- Display Interface
- Display Device
Display System

Display Device

- Analog
 - TV
 - CRT

- Digital
 - LCD
 - DVI
 - HDMI
Display System

Display Interface

- HDMI
- LVDS
- MHL
- A/V
Resolution

Concept
- Display shows the number of pixels
- VESA and CEA Standards

Functionality
- Display content
- Display device

4K display device must be sharper than ordinary display devices?
LCD Foundation

TTL
1. TTL Signal
2. Parallel Transmission
3. High power consumption & high EMI
4. Low Resolution
5. Small Screen
6. Low Cost

LVDS
1. Low voltage differential signaling
2. Serial Transmission
3. Low power consumption & low EMI
4. High Resolution
5. Support 50 inch screen
6. High Cost
Screen Lighting

LCD Product Status
- Interface circuit complexity
- No standard hardware pin
- Data line easily damaged
- Vendor support limited

LCD Screen Instructions
- Interface type
- Driver implementation
Screen Lighting

LCD Screen Process

- Determine screen backlighting and normal voltage

5. Electrical Characteristics

<table>
<thead>
<tr>
<th>Signal</th>
<th>Item</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock</td>
<td>Frequency</td>
<td>$1/\text{T_{Clock}}$</td>
<td>46.6</td>
<td>72.1</td>
<td>82.5</td>
<td>MHz</td>
</tr>
<tr>
<td>Frame Rate</td>
<td>Frequency</td>
<td>$1/\text{T}_{V}$</td>
<td>50</td>
<td>60</td>
<td>75</td>
<td>Hz</td>
</tr>
<tr>
<td>Vertical</td>
<td>Period</td>
<td>T_V</td>
<td>1058</td>
<td>1066</td>
<td>2040</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Active</td>
<td>T_{VD}</td>
<td>1050</td>
<td>1050</td>
<td>1050</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blanking</td>
<td>T_{VB}</td>
<td>8</td>
<td>16</td>
<td>997</td>
<td></td>
</tr>
<tr>
<td>Horizontal</td>
<td>Period</td>
<td>T_H</td>
<td>880</td>
<td>1128</td>
<td>2040</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Active</td>
<td>T_{HD}</td>
<td>840</td>
<td>840</td>
<td>840</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blanking</td>
<td>T_{HB}</td>
<td>40</td>
<td>288</td>
<td>1200</td>
<td></td>
</tr>
</tbody>
</table>

- Determine the timing parameters and add drivers

VESDA standard: CVT, GTF

http://www.vesa.org/vesa-standards/standards-summaries/

Irregular screen
Screen Lighting

Define Interface parameters and configure the interface or modify drivers

- Channel
- Data Input Format

6.3 The Input Data Format

Note1: 8-bits signal input.
Note2: L:NS alike H:Thine alike
Device Debugging

Debug Object
- Timing
- Interface circuit configuration

Debug Mode
- Driver code debugging
- Debugging tools
Equipment Debugging

- Mismatch of clock pole or data format
- Abnormal Electric Power
- Skew Configuration Error
Display Screen Interface

LCD Screen implementation

Touch Screen Support

Hardware Architecture

Applications
Hardware Architecture

Touch Screen Module

Sensor

Touch Control Chip
Communication Interface

- **I2C**
 - Mainstream Interface, wide range of applications
 - Need to design connect circuits, porting is not convenient

- **USB**
 - Easy to connect, easy to port, supports large sized panels
 - Occupies one USB Interface

- **SPI/UART**
 - Rarely used, need to design connection circuit, porting is not convenient
ZCC2901 Touch Screen Example Case

Part I

Case Environment

- Application Environment
 - Platform
 - System

- Touch Screen
 - Controller
 - Bus Interface
ZCC2901 Touch Screen Example Case

Part II

Why VIA VAB-1000? -> Ultra compact with rich I/O
- 10cm x 7.2cm compact Pico-ITX
- HDMI and Dual LVDS
- MicroSD slot and GLAN
- 3 USB ports
- SPI and 8 GPIO
- 3 I2C and 2 COM
- S-video and miniPCIe
ZCC2901 Touch Screen Example Case

Part III

Hardware Connection
Driver Porting

- I2C and GPIO driver

```c
// STEP_2(REQUIRED): Customize your I/O ports & I/O operations
#define GTP_RST_PORT S5PV210_GPJ3(6)
#define GTP_INT_PORT S5PV210_GPH1(3)
#define GTP_INT_IRQ gpio_to_irq(GTP_INT_PORT)
#define GTP_INT_CFG S3C_GPIO_SF0(0xF)

#define GTP_GPIO_AS_INPUT(pin) do {\n    gpio_direction_input(pin);
    s3c_gpio_setpull(pin, S3C_GPIO_PULL_NONE);
} while(0)

#define GTP_GPIO_AS_INT(pin) do {\n    GTP_GPIO_AS_INPUT(pin);
    s3c_gpio_cfgpin(pin, GTP_INT_CFG);
} while(0)

#define GTP_GPIO_GET_VALUE(pin) gpio_get_value(pin)
#define GTP_GPIO_OUTPUT(pin_level) gpio_direction_output(pin, level)
#define GTP_GPIO_REQUEST(pin, label) gpio_request(pin, label)
#define GTP_GPIO_FREE(pin) gpio_free(pin)
```
ZCC2901 Touch Screen Example Case

Part V

- Screen calibration

- Touch key processing

```c
} else if ((y > 300) && (y < (300 + GTH_KEY_WIDTH_600))) { // BACK
    touch_key = KEY_BACK;
} else if ((y > 420) && (y < (420 + GTH_KEY_WIDTH_600))) { // V-UP
    touch_key = KEY_VOLUMEUP;

    input_event(ts- >input_dev, EV_KEY, touch_key, 1);
    input_sync(ts- >input_dev);
    input_event(ts- >input_dev, EV_KEY, touch_key, 0);
    input_sync(ts- >input_dev);
```
ZCC2901 Touch Screen Example Case

Part VI

Android Add Event

- Android customization key

Debugging and Testing
Display System Secrets

LCD Screen Implementation

Touch Screen Support

VIA Display Advantages
Android Application Development

- Phone
- Tablet
- Smart TV
 - Auto-electronic
- Smart Home
 - Smart City
 - HealthCare
Android Application Development

Interactive Holographic 3D Display?

Multi-size, Multi-screen, & Wireless Display Support

HDMI

LCD
VIA Display Solutions
© 2014 VIA Technologies, Inc All Rights Reserved.
• VIA reserves the right to make changes in its products without notice in order to improve design or performance characteristics.
• This publication neither states nor implies any representations or warranties of any kind, including but not limited to any implied warranty of merchantability or fitness for a particular purpose. No license, express or implied, to any intellectual property rights is granted by this document.
• VIA makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication or the information contained herein, and reserves the right to make changes at any time, without notice. VIA disclaims responsibility for any consequences resulting from the use of the information included herein.
• VIA C7®, VIA C7®-D, VIA C7®-M, and VIA Eden® are trademarks of VIA Technologies, Inc.